Tuesday, June 5, 2012

Jailbreaking Benzene Dimers

A. Yu. Rogachev, X.-D. Wen, R. Hoffmann Journal of the American Chemical Society 2012, 134, 8062. (Paywall)
Contributed by Steven Bachrach.
Reposted from Computational Organic Chemistry with permission


Hoffmann1 reports on a number of new benzene dimer structures, notably 5-8, whose RIJCOSX-MP2/cc-pVTZ2 structures are shown in Figure 1. A few of these new dimers are only somewhat higher in energy than the known dimers 1-4. The energies of these dimers, relative to two isolated benzene molecules, are listed in Table 1.

1

2

3

4

5

6

7

8
Figure 1. RIJCOSX-MP2/cc-pVTZ optimized geometries of 1-8.
Table 1. Energy (kcal mol-1) of the dimers relative to two benzene molecules and activation energy for reversion to two benzene molecules.

Compound
Erel
Eact
1
50.9
29
2
49.9

3
38.2
9
4
58.7
19
5
71.9
30
6
49.9
36
7
60.8
27
8
98.8
28

The energy for reversion of the isomers 5-8 to two isolated benzene molecules is calculated to be fairly large, and so they should be stable relative to that decomposition mode. They also examined a series of other decomposition modes, including [1,5]-hydrogen migration, all of which had barriers of 21 kcal mol-1 or greater, retrocyclization ([2+2]), for which they could not locate transition states, electrocyclic ring opening (Cope), with barriers of at least 17 kcal mol-1 and dimerization – some of which had relatively small enthalpic barriers of 4-5 kcal mol-1. However, the dimerizations all have very unfavorable entropic activation barriers.
So, the conclusion is that all of the novel dimers (4-8) can be reasonable expected to hang around for some time and therefore are potential synthetic targets.

References

(1) Rogachev, A. Yu.; Wen, X.-D.; Hoffmann, R. "Jailbreaking Benzene Dimers," J.
Am. Chem. Soc.
2012134, 8062-8065, DOI:10.1021/ja302597r
(2) Kossmann, S.; Neese, F. "Efficient Structure Optimization with Second-Order Many-Body Perturbation Theory: The RIJCOSX-MP2 Method," J. Chem. Theory Comput.20106, 2325-2338, DOI:10.1021/ct100199k

InChIs

1: InChI=1S/C12H12/c1-2-6-10-9(5-1)11-7-3-4-8-12(10)11/h1-12H/t9-,10+,11-,12+
InChIKey=WMPWOGVJEXSFLI-UHFFFAOYSA-N
2: InChI=1S/C12H12/c1-2-6-10-9(5-1)11-7-3-4-8-12(10)11/h1-12H/t9-,10+,11+,12-
InChIKey=WMPWOGVJEXSFLI-IWDIQUIJSA-N
3: InChI=1S/C12H12/c1-2-4-12-10-7-5-9(6-8-10)11(12)3-1/h1-12H/t9?,10?,11-,12+
InChIKey=ONVDJSCNMCYFTI-CAODYFQJSA-N
4: InChI=1S/C12H12/c1-2-10-4-3-9(1)11-5-7-12(10)8-6-11/h1-12H
InChIKey=BCBHEUOKKNYIAT-UHFFFAOYSA-N
5: InChI=1S/C12H12/c1-2-6-10-9(5-1)11-7-3-4-8-12(10)11/h1-12H/t9-,10-,11+,12+/m1/s1
InChIKey=WMPWOGVJEXSFLI-WYUUTHIRSA-N
6: InChI=1S/C12H12/c1-2-4-12-10-7-5-9(6-8-10)11(12)3-1/h1-12H/t9?,10?,11-,12-/m0/s1
InChIKey=ONVDJSCNMCYFTI-QQFIATSDSA-N
7: InChI=1S/C12H12/c1-2-6-10-9(5-1)11-7-3-4-8-12(10)11/h1-12H/t9-,10-,11-,12+/m1/s1
InChIKey=WMPWOGVJEXSFLI-KKOKHZNYSA-N
8: InChI=1S/C12H12/c1-2-6-10-9(5-1)11-7-3-4-8-12(10)11/h1-12H/t9-,10-,11-,12-
InChIKey=WMPWOGVJEXSFLI-NQYKUJLISA-N